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POLARIZATION GRADIENT IN ELASTIC DIELECTRICS

R. D. MINDLIN

Department of Civil Engineering, Columbia University, New York, N.Y.

Abstract—By inclusion of the polarization gradient in the stored energy function of elastic dielectrics, the
classical theory of piezoeleciricity is extended to accommodate an electro-mechanical interaction in centro-
symmetric (including isotropic) materials and a surface energy of deformation and polarization.

1. TOUPIN’S VARIATIONAL PRINCIPLE

As a preliminary to an extension of the classical theory of electro-mechanical interaction
in elastic, dielectric continua, a review is given, in this section, of a linear version of
Toupin’s [1] variational principle for the equilibrium equations of classical piezoelectricity.

In a body occupying a volume V bounded by a surface §, separating V' from an outer
vacuum V7, it is assumed that

~5| Hdv+ f (f,»éui+E?5P,~)dV+ftiéuidS=0, (L1
V> | 4 S

where H is the electric enthalpy density, V* = V+ V', y; is the displacement, P, is the
polarization and f;, E? and 1, are the external body force, electric field and surface traction,
respectively. Toupin separates the electric enthalpy density into an energy density of
deformation and polarization, say W', and a remainder:

H = WSy, P)—}eop 0.+ 9 P, (1.2)
where §;; is the strain,
Sy = Huji+u; ), (1.3)
¢ is the potential of the Maxwell self-field,
EF = —q, (1.4)

and ¢, is the permittivity of a vacuum.
For independent variations of u;, P, and ¢,

0H = T,0S;;—EdP,~ 09 100+ 0P+ Pdo ;. (1.5)
where T; is the stress and E; is the effective local electric force::
owt - owt
T, = w5 T;, E = ~ 5 (1.6)

By the chain rule of differentiation,
OH = — T 0u;— (E;— @ JOP;— (— 00 ;i + P, )09 +(T0uy) i+ [(— €00+ P)o@] ;. (1.7)
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Inserting (1.7) in (1.1) and applying the divergence theorem, we have

f [(Tij,i+fj)5uj+(Ei_<P.i+E?)5Pi+(—SO(P.ii“'Pi,i)é(P] dv
1)

+ f [(t;=n T )ou;+nfeole ;1—P)oeldS = 0; (1.8)
S
whence follow the Euler equations
T,i+fi =0,
E—¢,+E) =0, (1.9)
*go(p,ii+Pi.i = 0, in V,
e;=0,nV";
and the boundary conditions
nT; = t;,
o (1.10)
n{—zgle ]+ P)=0.
where [¢ ] is the jump in ¢ ; across S.
The energy density of deformation and polarization is taken to be
Wt = $a;;PPi+ 3¢ uSi S+ fiwSiiPa (1.11)
so that, from (1.6),
—E; = ay P+ fu;Su.
Jj ki k fklj ki (112)
T = fipPet CijaSur-

Equations (1.3), (1.9) and (1.12), with boundary conditions (1.10), constitute the classical
theory of piezoelectricity in the form given by Toupin.

2. POLARIZATION GRADIENT

The extension of the classical theory, to be considered, is obtained simply by adding a
functional dependence of W' on the polarization gradient. This addition may be justified
on several grounds. First of all, the order of the differential equations is thereby not raised,
so that we are not adding effects of higher order than those already included. Alternatively,
suppose we were to start by assuming dependence of W' on the displacement and
polarization and their gradients and truncate after the first gradients. The requirement of
invariance of WT, in a rigid translation and rotation of the deformed and polarized body,
eliminates dependence on the displacement and rotation only ; leaving the strain, polariza-
tion and polarization gradient. Finally, from the point of view of lattice theories of crystals
[2, 3], based on the “‘shell model” [4] of the atom, the polarization gradient represents the
long wave approximation to the shell-shell and core-shell interactions between atoms
which logically should accompany the core-core interaction between atoms, despite their
possibly small magnitude.

In addition to taking the polarization gradient into account, we shall also include the
kinetic energy and employ Hamilton’s principle, so that (1.1) is replaced by

t Ty
6f dt | Gpug,—H)dV + J dt[f (fou;+E%SP)SV + J z,ﬁuids] =0, (2.1)
0 v* t JV S

1 0
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where
H = WY, P, P; ) =360 0+ P (2.2)
As usual [5],

f 1
to v to 1 4

Then, by the same procedure as that employed in the preceding section,

Ti+f; = pity,

E;+E;;—¢ ,+E? =0, (2.3)
~&@i+P,; =0, inV,
qD’,'f = O, in V/;
and, on §,
nT; =t
n{—egole ]+ P) = 0, 2.4)
niEij = 0,
where
_ awr Wt owt
L= E.=—, T = = T;. 2.5
E: oP,’ e oP;; A ! 3)

For WX, we take
wh = bﬁ}P,-,; +3; PP+ b Py P+ 3¢S+ 4Py S+ fnSiiPe+ 8inPiPr. ;. (2.6)

Then, from (2.5),
—E; = ayP; + &P+ SuiSu
E;; = gxiiPe+ bijuPrs+diaSu+ b, 27
T = finPit duiPri+ cijaSu-
Equations (1.3), (2.3} and (2.7), with boundary conditions (2.4), form the equations of the

extended theory. The significance of the linear term b{;P; ;, in W', is considered in Section 4.

3. CENTROSYMMETRIC MATERIALS

One of the properties of the extended theory is its accommodation of an electro-
mechanical interaction, through the coefficient d;;,, even for materials with centro-
symmetry. For example, for centrosymmetric cubic symmetry [6],

Jin =0, g&in =0, b% = body;, a;; = ady;,

by = B8 +b 20,01+ baal(ud i+ 040 3} + by 7(030 ;y — 840 1),
Cijit = COyjur+ €1 200k + CaalOudji+ 640 4),

dijig = A0;jy+d ;2000 + daa(0ud j+ 540 ),

(3.1)
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where
b=1by,—b1;—2b4,, € =Cy1—C13— 24, d=d—d;~2d,,, (3.2)

d;; is the Kronecker delta and 6, is unity if all indices are alike and zero otherwise. Then,
from (2.5), (2.6) and (3.1),

—_Ei = aPl',
E;j = bd;juPyx+b120;Pc x+baa(P; i+ Py ) +bqq(P; ;— P, )
+d0;ju S+ d1204S +2d445:;+ by by, (3.3)

T; = déjaPrx+d120;Pyx+daa(Pi i+ P )
+ C5,-jk,S,‘, + Clzéijskk + 2C44S,~j.
Upon substituting (3.3) in (2.3) and employing (1.3), we find the “displacement’ equations
of motion:
30, M g+ g 1) + €1 20,8 i
+ Caaltt i+ u; i) + doP it 1204 Pt daalPj it Py )+ f; = pil;
30ty g+ Uy )+ dy 20ty i+ daaluj i+ u; ) —aPi— o ; (34
+b0ijuiPy i+ b1 20iiPe i+ baa(P i+ Py )+ bo(Pyy— P )+ EY = 0,
— @i+ P,; = 0.
For isotropic materials, it is only necessary to set
b=c=d=0
Then (3.4) become, in vector notation,
C44V2“ + (Cll + C44)VV -u+ d44V2P + (d12 + d44)VV . P+ f = pu,
d44V2u+(d12+d44)VV . “+(b44+b77)V2P+(b12+b44—b77)VV . P—aP—V(P+E0 = 0,
—&V2Q+V P = 0.
(3.5)

It is apparent that, in both cases, the displacement and polarization fields are coupled
through the constants d; ;.

4. SURFACE ENERGY OF DEFORMATION AND POLARIZATION

It will be observed that the energy density W', in (2.6), contains a linear term, b{;P; ;,
in the polarization gradient. The removal of the resulting n;E;; from a boundary results in
a polarization and strain localized at the surface. The accompanying surface energy can be
found as follows.

The energy density W, given by (2.6), can be written in the alternative form

Wh = 3b0P, i +3T,;S;;— SE.P,+3E,;P;

[ lF R

(4.1)

through the use of (2.7). Then, in the case of equilibrium, application of the chain rule, the
divergence theorem, the boundary conditions and the equations of equilibrium results in
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the following expression for the total energy:

1 1 1
J‘ VV(iV =:—J.'nbgfcd5'+'lf (ﬁui+'E?}%)dp/+‘:f huidS. (42)
| 44 2 S 2 | 4 2 M

Hence, in the absence of external forces, we have
1
W’dp’==-‘[ n¢gf§ds. (43)
y 2Js

Accordingly, the surface energy of deformation and polarization per unit area (the surface
tension) is
T = {nb2P);. (4.4)

o

This energy is to be added to the bond energy, per unit area, to obtain the total energy
per unit area required to separate the material into two parts along a surface S [7].

As an example, consider the case of a free (100) surface of a semi-infinite, centro-
symmetric, cubic crystal. In this case, the resulting fields are one-dimensional and the
equations of equilibrium, (3.4), for the half space x, > 0, reduce to

Cyty g1 +Hd Py =0,
digy g1 +by Py —aPi—¢, =0, (4.5)
—&@11+P =0,
while the boundary conditions, on x; = 0, become

Ciy +di Py =0,

diuy +by Py = —bg, (4.6)
—&op + Py =0
Consider the functions
u,=A, e ™ Pl=A,e™ = A;e (4.7)

Upon substituting (4.7) into the equilibrium equations (4.5), we find
Az = —lA,/e0 = lc1 A /e0d (4.8)

_ cubil“dii #
cilat+e M)

(4.9)

Positive definiteness of W' requires the radicand in (4.9) to be positive.
With (4.8), the first and third of the boundary conditions (4.6) are satisfied identically
and the second yields

bOdll
A = —-——
! ¢ llategt) (4.10)
Whence, from (4.8),
b bo
A = —— A = — .
27 Ka+eg ! } agy+ 1 @1



642 R. D. MINDLIN

Thus, there are a strain and a polarization, at the surface, which decay exponentially
into the interior with decay constant . The surface energy of deformation and polarization
per unit area (the surface tension) is, from (4.4) and (4.11),

bz
T=-———9% 4.12
Wa+ex M) (@.12)
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AbGcTpakT—VYyHTHIBASA BKJIIOYEHHE IPAJHEHTA NOMApH3auMi B QYHKLMIO COXPAHEHHS JHEPIrHM YNPYTHX
IHONEKTPHKOB PACLUMPAETCS KJIACCHYECKask TEOPHA NBE30IJIEKTPUYECTBA NYTEM Y4ETa INEKTPO-MEXaHM-
yecKOM peakUMH B OCECMMMETDHYECKUX [BKIIIOYAsl M30TPOINHbIE] MaTepHanax M TOBEPXHOCTHOH IHEpruu
nedopManiy ¥ NONAPDH3ALMH,



